8 research outputs found

    Adams As Potential Regulators of Stem Cell Quiescence in the Olfactory Epithelium

    Get PDF
    I demonstrate that a member of the protein family A Disintegrin and Metalloprotease (ADAM), ADAM23, is expressed in the olfactory epithelium (OE) and may inhibit neural progenitor cell (NPC) proliferation. I generated a list of ten gene candidates and selected ADAM23 for further study, based on its conserved protein structure and accumulating evidence for its role in cell cycle progression of proliferative cells. I next determined ADAM23 protein localization using immunohistochemistry and measured both mRNA and protein expression post-lesion with RT-qPCR and Western blot. ADAM23 is expressed in multiple cell types of the OE, including glial Sustentacular (Sus) cells and neurons. There are four splice variants present in the OE, and mRNA expression decreases three to four-fold post-lesion but recovers to pre-lesion levels within two weeks (p\u3c0.05, ANOVA). ADAM23 is poised to regulate NPC quiescence through contact with Sus cell end-feet. It may also facilitate important Sus:neuron interactions

    A biophysical model explains the spontaneous bursting behavior in the developing retina

    Full text link
    During early development, waves of activity propagate across the retina and play a key role in the proper wiring of the early visual system. During the stage II these waves are triggered by a transient network of neurons, called Starburst Amacrine Cells (SACs), showing a bursting activity which disappears upon further maturation. While several models have attempted to reproduce retinal waves, none of them is able to mimic the rhythmic autonomous bursting of individual SACs and reveal how these cells change their intrinsic properties during development. Here, we introduce a mathematical model, grounded on biophysics, which enables us to reproduce the bursting activity of SACs and to propose a plausible, generic and robust, mechanism that generates it. The core parameters controlling repetitive firing are fast depolarizing VV-gated calcium channels and hyperpolarizing VV-gated potassium channels. The quiescent phase of bursting is controlled by a slow after hyperpolarization (sAHP), mediated by calcium-dependent potassium channels. Based on a bifurcation analysis we show how biophysical parameters, regulating calcium and potassium activity, control the spontaneously occurring fast oscillatory activity followed by long refractory periods in individual SACs. We make a testable experimental prediction on the role of voltage-dependent potassium channels on the excitability properties of SACs and on the evolution of this excitability along development. We also propose an explanation on how SACs can exhibit a large variability in their bursting periods, as observed experimentally within a SACs network as well as across different species, yet based on a simple, unique, mechanism. As we discuss, these observations at the cellular level have a deep impact on the retinal waves description.Comment: 25 pages, 13 figures, submitte

    La cellule amacrine AII comme cible pour la restauration de la vision avec l'optogénétique

    No full text
    La perte progressive des photorĂ©cepteurs chez les patients atteints de rĂ©tinite pigmentaire et d'autres maladies dĂ©gĂ©nĂ©ratives de la rĂ©tine est une cause majeure de cĂ©citĂ©. Des progrĂšs ont Ă©tĂ© rĂ©alisĂ©s rĂ©cemment dans l'application de l'optogĂ©nĂ©tique pour restaurer la vision dans des modĂšles animaux exprimant des protĂ©ines optogĂ©nĂ©tiques dans les photorĂ©cepteurs restants, les cellules bipolaires de la couche intermĂ©diaire ou les cellules ganglionnaires de la couche de sortie de la rĂ©tine, afin de les rendre sensibles Ă  la lumiĂšre. Aux stades avancĂ©s de la maladie, il reste peu de photorĂ©cepteurs et le ciblage des cellules ganglionnaires limite le traitement visuel normal qui peut ĂȘtre prĂ©servĂ©. Par exemple, lorsqu'une opsine est exprimĂ©e dans les cellules ganglionnaires, les cellules ganglionnaires OFF, sensibles Ă  la diminution de la lumiĂšre dans la rĂ©tine normale, vont changer de polaritĂ© et devenir ON, c'est-Ă -dire sensibles Ă  l'augmentation de la lumiĂšre. Les stratĂ©gies actuelles de restauration de la vision ne restaurent donc qu'une quantitĂ© limitĂ©e du traitement rĂ©tinien. Nous prĂ©sentons ici une stratĂ©gie de restauration de la vision dans laquelle nous ciblons les cellules amacrines de type AII. Cet interneurone est connectĂ© aux cellules bipolaires On et Off par des synapses prĂ©servant et inversant le signe, respectivement. Nos rĂ©sultats, issus d'enregistrements multiĂ©lectrodes ex vivo sur la rĂ©tine de souris, montrent que la stimulation optogĂ©nĂ©tique des cellules amacrines AII permet de gĂ©nĂ©rer des rĂ©ponses ON et OFF chez les cellules ganglionnaires dans les rĂ©tines normales et dĂ©gĂ©nĂ©rĂ©es. En comparant les rĂ©ponses Ă  une stimulation lumineuse normale avec les rĂ©ponses Ă  une stimulation optogĂ©nĂ©tique, nous avons constatĂ© que la majoritĂ© des cellules ganglionnaires, sensibles aux deux stimuli, conservaient leur polaritĂ© entre les deux conditions, ce qui suggĂšre que des voies similaires sont activĂ©es dans la stimulation normale et optogĂ©nĂ©tique. Nous montrons que cette stratĂ©gie permet Ă©galement de restaurer la diversitĂ© des rĂ©ponses des cellules ganglionnaires, au-delĂ  de leur nature ON-OFF. Ces rĂ©sultats indiquent que l'AII pourrait ĂȘtre une cible utile pour la restauration de la vision dans le futur.The progressive loss of photoreceptors in patients with retinitis pigmentosa and other retinal degenerative diseases is a major cause of blindness. Strides have been made recently in applying optogenetics to restore vision in animal models by targeting opsin expression to remaining photoreceptors, intermediate layer bipolar cells, and output layer retinal ganglion cells. In later stages of the disease, few photoreceptors remain, and targeting ganglion cells limits the normal visual processing that can be preserved. For example, when an opsin is expressed in ganglion cells, OFF ganglion cells, sensitive to light decrease in the normal retina, will switch polarity and become ON, i.e. sensitive to light increase. Current vision restoration strategies thus only restore a limited amount of retinal processing. Here we present a vision restoration strategy where we target the AII amacrine cell. This interneuron connects the On and Off visual pathways through both sign-preserving and sign-inverting synapses. Our results, from ex vivo mouse retina multielectrode array recordings, show that optogenetic stimulation of AII amacrine cells can generate both ON and OFF ganglion cell responses in both normal and degenerated retinas. By comparing responses to normal light stimulation with responses to optogenetic stimulation, we found that the majority of ganglion cells, responsive to both stimuli, maintained their polarity between the two conditions, suggesting that similar pathways are activated in normal and optogenetic stimulation. We show that this strategy also allows restoring the diversity of ganglion cell responses, beyond their ON-OFF nature. These results indicate that the AII could be a useful target for vision restoration in the future

    La cellule amacrine AII comme cible pour la restauration de la vision avec l'optogénétique

    No full text
    The progressive loss of photoreceptors in patients with retinitis pigmentosa and other retinal degenerative diseases is a major cause of blindness. Strides have been made recently in applying optogenetics to restore vision in animal models by targeting opsin expression to remaining photoreceptors, intermediate layer bipolar cells, and output layer retinal ganglion cells. In later stages of the disease, few photoreceptors remain, and targeting ganglion cells limits the normal visual processing that can be preserved. For example, when an opsin is expressed in ganglion cells, OFF ganglion cells, sensitive to light decrease in the normal retina, will switch polarity and become ON, i.e. sensitive to light increase. Current vision restoration strategies thus only restore a limited amount of retinal processing. Here we present a vision restoration strategy where we target the AII amacrine cell. This interneuron connects the On and Off visual pathways through both sign-preserving and sign-inverting synapses. Our results, from ex vivo mouse retina multielectrode array recordings, show that optogenetic stimulation of AII amacrine cells can generate both ON and OFF ganglion cell responses in both normal and degenerated retinas. By comparing responses to normal light stimulation with responses to optogenetic stimulation, we found that the majority of ganglion cells, responsive to both stimuli, maintained their polarity between the two conditions, suggesting that similar pathways are activated in normal and optogenetic stimulation. We show that this strategy also allows restoring the diversity of ganglion cell responses, beyond their ON-OFF nature. These results indicate that the AII could be a useful target for vision restoration in the future.La perte progressive des photorĂ©cepteurs chez les patients atteints de rĂ©tinite pigmentaire et d'autres maladies dĂ©gĂ©nĂ©ratives de la rĂ©tine est une cause majeure de cĂ©citĂ©. Des progrĂšs ont Ă©tĂ© rĂ©alisĂ©s rĂ©cemment dans l'application de l'optogĂ©nĂ©tique pour restaurer la vision dans des modĂšles animaux exprimant des protĂ©ines optogĂ©nĂ©tiques dans les photorĂ©cepteurs restants, les cellules bipolaires de la couche intermĂ©diaire ou les cellules ganglionnaires de la couche de sortie de la rĂ©tine, afin de les rendre sensibles Ă  la lumiĂšre. Aux stades avancĂ©s de la maladie, il reste peu de photorĂ©cepteurs et le ciblage des cellules ganglionnaires limite le traitement visuel normal qui peut ĂȘtre prĂ©servĂ©. Par exemple, lorsqu'une opsine est exprimĂ©e dans les cellules ganglionnaires, les cellules ganglionnaires OFF, sensibles Ă  la diminution de la lumiĂšre dans la rĂ©tine normale, vont changer de polaritĂ© et devenir ON, c'est-Ă -dire sensibles Ă  l'augmentation de la lumiĂšre. Les stratĂ©gies actuelles de restauration de la vision ne restaurent donc qu'une quantitĂ© limitĂ©e du traitement rĂ©tinien. Nous prĂ©sentons ici une stratĂ©gie de restauration de la vision dans laquelle nous ciblons les cellules amacrines de type AII. Cet interneurone est connectĂ© aux cellules bipolaires On et Off par des synapses prĂ©servant et inversant le signe, respectivement. Nos rĂ©sultats, issus d'enregistrements multiĂ©lectrodes ex vivo sur la rĂ©tine de souris, montrent que la stimulation optogĂ©nĂ©tique des cellules amacrines AII permet de gĂ©nĂ©rer des rĂ©ponses ON et OFF chez les cellules ganglionnaires dans les rĂ©tines normales et dĂ©gĂ©nĂ©rĂ©es. En comparant les rĂ©ponses Ă  une stimulation lumineuse normale avec les rĂ©ponses Ă  une stimulation optogĂ©nĂ©tique, nous avons constatĂ© que la majoritĂ© des cellules ganglionnaires, sensibles aux deux stimuli, conservaient leur polaritĂ© entre les deux conditions, ce qui suggĂšre que des voies similaires sont activĂ©es dans la stimulation normale et optogĂ©nĂ©tique. Nous montrons que cette stratĂ©gie permet Ă©galement de restaurer la diversitĂ© des rĂ©ponses des cellules ganglionnaires, au-delĂ  de leur nature ON-OFF. Ces rĂ©sultats indiquent que l'AII pourrait ĂȘtre une cible utile pour la restauration de la vision dans le futur

    HYPER localized hyperthermia – early results

    No full text
    In magnetic fluid hyperthermia (MFH), Magnetic Nanoparticles (MNPs) dissipate heat when exposed to alternating magnetic fields (AMF). MFH is used for targeted energy deposition for targeted drug-delivery or cancer therapy. To avoid heat deposition in all areas with high particle concentration, a gradient field featuring a field-free area (FFR) can be utilized to isolate heating a target region. In this work, we present preliminary results with a localized hyperthermia system, HYPER, that features a mechanically actuated gradient that enables adjusting the heating region’s size and position. The size of the heating region in our prototype is verified by measuring the full width at half maximum (FWHM) of the specific absorption rate (SAR) point spread function (PSF) and compared to a theoretical heating model.   Int. J. Mag. Part. Imag. 6(2), Suppl. 1, 2020, Article ID: 2009061, DOI: 10.18416/IJMPI.2020.200906
    corecore